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ABSTRACT The spread of bacteria resistant to antimi-
crobial agents calls for population-wide treatment strategies
to delay or reverse the trend toward antibiotic resistance. Here
we propose new criteria for the evaluation of the population-
wide effects of treatment protocols for directly transmitted
bacterial infections and discuss different usage patterns for
single and multiple antibiotic therapy. A mathematical model
suggests that the long-term benefit of single drug treatment
from introduction of the antibiotic until a high frequency of
resistance precludes its use is almost independent of the
pattern of antibiotic use. When more than one antibiotic is
employed, sequential use of different antibiotics in the pop-
ulation (‘‘cycling’’) is always inferior to treatment strategies
where, at any given time, equal fractions of the population
receive different antibiotics. However, treatment of all pa-
tients with a combination of antibiotics is in most cases the
optimal treatment strategy.

The appearance and spread of antibiotic resistance is becom-
ing an increasingly serious public health problem. Antibiotic
resistance has become clinically important in such community-
acquired organisms as Streptococcus pneumoniae (1), Neisseria
gonorrhoeae (2), and Mycobacterium tuberculosis (3) and in
nosocomial pathogens including Staphylococcus aureus (4),
Enterococcus spp. (4, 5), and Klebsiella spp. (6). These resistant
organisms not only compromise the success and increase the
cost of treating individual patients, but can also be transmitted
to other hosts, resulting in the epidemic spread of antibiotic-
resistant infections.

In response to the spread of resistant bacteria from patient
to patient, a number of measures have been proposed and
tried, with varying success. These include improvement of
hospital hygiene (7), the use of vaccines (8), controls on or
reductions of antibiotic use (9), and cycling of different
antibiotics (4, 10). The general goal of these interventions is to
reduce the incidence of resistant infections, and thereby to
prolong or restore the effectiveness of existing antibiotics.
Mathematical models have been used to evaluate the compe-
tition between sensitive and resistant bacteria (11) and the
community-wide effects of treating tuberculosis under various
assumptions about treatment success rates (12). Thus far,
however, there are (to our knowledge) no quantitative models
that evaluate the population wide effects of different patterns
of antibiotic use on the number of infections that occur during
the useful ‘‘lifetime’’ of one or more antibiotics.

Here we present and analyze a series of mathematical
models to generate predictions concerning the effects of
various patterns of drug treatment at the population level. Two
models are considered. First, we consider treatment with a
single drug and resistance to that drug and analyze the model
to predict the consequences of different usage patterns. The
second model analyzes the population-level consequences of

different usage patterns of the two drugs. The goal of analyzing
such models is to understand how antibiotic usage patterns
may be optimized to preserve or restore antibiotic effective-
ness.

Evaluation of Antibiotic Policies

Before proceeding, it is necessary to define precisely what
would constitute an optimal antibiotic policy. One criterion
might be to choose a policy that maximizes the time before
resistant bacteria constitute some fixed fraction of all bacteria
of a given species. Clearly this criterion by itself is useless, as
it would be best achieved by never using the antibiotic.
Therefore, although the rate of ascent of resistance to a drug
is of interest, we would like a criterion of optimality that
balances the value of preserving a drug’s effectiveness with the
value of treating patients successfully with the drug. Thus,
another measure of the efficacy of an antibiotic use policy is
the extent to which it increases the total number of uninfected
hosts andyor reduces the total number of infected hosts over
a defined period. Mathematically, this means that the opti-
mality criterion for a treatment policy is to maximize the
number of uninfected hosts, integrated over time, or to
minimize the corresponding integral for infected hosts. This
criterion gives equal weight to infections prevented or cured in
the short term due to use of the drug, as well as to infections
prevented or cured in the long term due to the preservation of
the drug’s effectiveness. In our analysis of these models, we
consider all three of these criteria: time until resistance reaches
a particular fraction of the bacterial population, number of
hosts infected with the bacterium, and number of uninfected
hosts.

Single Antibiotic Therapy

We first consider a simple compartment model in which
patients with bacterial infections may be treated with a single
antibiotic. The model is depicted in Fig. 1A. Uninfected hosts,
of density x, enter the population at a rate l and are removed
from the population (die) at a per capita rate d. They can be
infected by bacteria that are either sensitive (wt) or resistant
(res) to the treating antibiotic (or drug for short). The densities
of wt- and res-infected patients are yw and yr, respectively.
Uninfected hosts become infected at a rate proportional to
their density, x, the density of infecteds, yw 1 yr, and a
transmission rate parameter b. This reflects direct, contact-
dependent transmission of infectious agents from diseased
hosts to uninfected hosts. Infected hosts die at rate c, which
includes natural and disease-associated mortality. We assume
that in the absence of treatment patients infected with wt and
res bacteria recover from infection at rates rw and rr, respec-
tively. Once an infection is cleared, the surviving patient
immediately returns to the susceptible subpopulation. Patients
infected with wt-bacteria are removed from the wt-infectedThe publication costs of this article were defrayed in part by page charge
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compartment at a rate fh, where f is a scaling parameter
(between 0 and 1) reflecting the fraction of patients treated
and h is the maximum rate when all patients are treated. A
fraction s of treated wt-infecteds develop resistance during
treatment. Such resistance is referred to as ‘‘acquired’’ or ‘‘de
novo’’ resistance, in contrast to ‘‘primary’’ resistance (infection
by a resistant organism). The remainder recover and become
susceptible again. In terms of ordinary differential equations
the model is

dxydt 5 l 2 dx 2 bx~yw 1 yr! 1 rwyw 1 rryr 1 fh~1 2 s!yw, [1]

dywydt 5 ~bx 2 c 2 rw 2 fh!yw, [2]

dyrydt 5 ~bx 2 c 2 rr!yr 1 fhsyw. [3]

Assumptions

This model makes several assumptions. (i) The fitness cost
associated with resistance is manifest by a higher rate of
clearance of the infection (recovery) of hosts infected with
resistant bacteria relative to those infected with sensitive (rr .
rw). In fact, this cost of resistance could also be manifest in a

lower rate of transmission b, and the conclusions about optimal
treatment protocols would not be altered. (ii) We assume that
patients who are treated and cured become immediately
susceptible again. We thus neglect temporary or life-long
immunity. We have checked, however, that incorporating a
class of immune hosts we can derive results that are completely
analogous to those presented in this paper. (iii) We assume
that in a fraction, s, of wt-infected patients, there is a pre-
existing, small subpopulation of resistant bacteria. When these
patients receive therapy, the resistant population will grow and
will quickly dominate the infection. We define this process as
‘‘acquired resistance’’ and assume that acquisition of resistance
happens only in treated hosts. (iv) The model does not include
superinfection of wt-infecteds by resistant bacteria. The effect
of superinfection can be safely neglected as long as the
frequency of infecteds is low.

Long-Term Consequences of Treatment

There are two different long-term outcomes depending on the
efficacy of the antibiotic policy (see Appendix A1). If the
selection pressure imposed by the antibiotic on sensitive
infections, fh, outweighs the cost of resistance, Dr 5 rr 2 rw,
then resistant infections will prevail in the long term and
sensitive infections will disappear. Otherwise sensitive infec-
tions will prevail, but resistant infections will coexist at low
levels. In the following we will only consider cases where the
selection pressure exerted by the antibiotic treatment protocol
is strong enough that there is a net selection advantage for the
resistant bacteria in the presence of treatment.

Dynamics of Resistance

Resistant organisms will account for a fraction s of all
infections at a time given by: Ts 5 (1y(fh 2 Dr))ln[1 1
(sy(1 2 s))((fh 2 Dr)yfhs)] (see Appendix A2). Faster rates
of antibiotic treatment and cure (fh) accelerate the emergence
of resistance in the population. Ts depends inversely on the net
advantage of resistant bacteria in the presence of treatment,
fh 2 Dr, and logarithmically on the fraction, s, of patients that
acquire resistance when treated. Therefore small changes in f
or h may have a strong effect on Ts, whereas even large
changes in s will only weakly affect Ts.

The parameter s determines the dynamics of the initial
appearance of resistant infections. Soon after the start of
therapy, however, the majority of res-infecteds are due to
epidemic transmission rather than acquired resistance, and the
subsequent rise of resistance in the population is caused by an
epidemic of resistant bacteria. Once most resistant cases are
due to epidemic transmission, the time necessary for res-
infecteds to increase from a fraction r0 to a fraction re is given
by Ti 5 (1y(fh 2 Dr))ln[((1 2 r0)yr0)(rey1( 2 re))] (see
Appendices A3 and A4). When treatment is withdrawn (f 5 0),
the reversal time until the res-infecteds have decreased from
a fraction re to a fraction r0 is given by Td 5 (1yDr)ln[((1 2
r0)yr0)(rey(1 2 re))]. Hence, the ratio of the times necessary
to decrease from re to r0 and to increase from r0 to re is TdyTi
5 ((fh 2 Dr)yDr). Because the fitness difference, Dr, between
wt and res bacteria in absence of treatment is typically much
smaller than the difference, fh 2 Dr, in the presence of
treatment, this ratio will be much larger than one. Thus, the
emergence of resistance in response to treatment is usually
much faster than the reversion to wt when treatment is
withdrawn. A similar result has been obtained for pesticide
resistance (13).

Benefit of Treatment

Fig. 2 shows a simulation of the single antibiotic therapy model.
The shaded area reflects the total gain of uninfecteds that is

FIG. 1. (A) Graphical illustration of the single antibiotic treatment
model. The variables and parameters are explained in the main text.
(B) Multiple antibiotic treatment model: The variables are x for the
susceptibles, and yw, ya, ya, and yab for patients infected with wild-type
(wt), A-res, B-res, and AB-res bacteria. The model is dxydt 5 l 2 dx 2
b(yw 1 ya 1 yb 1 yab)x 1 rwyw 1 raya 1 rbyb 1 rabyab 1 h(1 2 q)fabyw
1 h(1 2 s)((fa 1 fb)yw 1 fayb 1 fbya 1 fab(ya 1 yb)); dywydt 5 (bx 2
c 2 rw 2 h(fa 1 fb 1 fab))yw; dyaydt 5 (bx 2 c 2 ra 2 h(fb 1 fab))ya
1 hsfayw; dybydt 5 (bx 2 c 2 rb 2 h(fa 1 fab))yb 1 hsfbyw; dyabydt 5
(bx 2 c 2 rab)yab 1 hs(fab(ya 1 yb) 1 fayb 1 fbya) 1 qhfabyw. The
parameters are rw, ra, rb, and rab, for the recovery rates of wt, A-res,
B-res and AB-res infecteds, respectively; fa, fb, and fab, for the fraction
of patients treated with antibiotic A, B, or AB; and s and q are the
fractions of hosts that become resistant when treated with a single drug
or both drugs simultaneously. The parameters fa, fb, and fab reflect the
fraction of patients treated with antibiotics, A, B, and AB. (Note that
the parameters fa, fb, fab, s, q represent fractions and are therefore
restricted to be between 0 and 1. The parameters fa, fb, and fab
additionally must fulfill fa 1 fb 1 fab # 1. If their sum is smaller than
1, than this reflects that some fraction of the patients are not treated
at all.) The equilibrium levels of susceptibles and infecteds are derived
in Appendix B1.
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achieved by treatment before the antibiotic therapy fails due to
resistance. The question is, what treatment policy maximizes
the total gain of uninfecteds?

The total gain of uninfecteds is given by G 5 (1yb)[2ln(s) 1
DrT 1 ln(g) 1 ln(1 2 s 2 (Dryfh))], where T is the time past
the start of therapy and g is the ratio between the density of
infecteds at time T and their density at equilibrium before
therapy (see Appendix A3).

If there is no significant cost to resistance (i.e., Dr ' 0), then
the total gain of uninfecteds until resistant infections dominate
in the patient population is G 5 2ln(s)yb. The gain is
independent of the rate at which patients are treated and
cured, fh, and therefore independent of the treatment policy.
Hence, whether a small or large fraction of patients is treated,
whether treatment of the population is continuous or inter-
mittent, in the absence of a significant cost to resistance all
treatment policies eventually result in the same total gain of
uninfecteds.

If, on the other hand, there is a fitness cost to resistance
(Dr . 0), then increasing the rate of treatment and cure (fh)
increases the gain of uninfected hosts. However, this gain is
negligible unless the drug induced selection pressure against wt
only just compensates the cost of resistance (i.e., Dr ' fh).

Imagine that the rise of resistant infections has progressed
to a point where the contribution of acquired resistance to the
overall prevalence of resistance is negligible compared to the
epidemic spread of resistance. From this time onwards, the
total gain of uninfecteds is given by G 5 (1yb)[ln(gyr0) 1
DrT], where r0 is the initial fraction of resistant infections
before treatment (see Appendix A4). The total gain is inde-
pendent of fh, and hence, even in the presence of a cost to
resistance, the total benefit of treatment is independent of the
treatment protocol, once most resistant infections arise from
primary resistance (infection with a resistant organism). Put
another way, the effect of treatment patterns on the total gain
of resistance is limited to the period during which de novo
acquisition of resistance is numerically important by compar-
ison to the spread of resistant infections.

All these results were derived by assessing the benefit of a
treatment schedule in terms of the total gain of uninfecteds.

However, all results can be obtained in complete analogy by
measuring the benefit of treatment in terms of the total
reduction of infected hosts (see Appendix A3).

Multiple antibiotics

Let us consider treatment strategies using several antibiotics.
In the following we assume that we have two antibiotics, A and
B, but the results can easily be generalized for more than two
antibiotics. Fig. 1B shows a natural extension of the single
antibiotic therapy model to incorporate two antibiotics and
resistance to either or both antibiotics. The question now is,
what is the optimal treatment policy using more than one
antibiotic.

We distinguish three scenarios: case I, the majority of
resistant infections are caused by transmission of resistant
organisms; case II, the majority of resistant infections initially
result from acquired resistance, and only later does transmis-
sion of these organisms become important; and case III,
multiple resistance is initially absent, and its appearance has a
very low probability. For these three scenarios we compare
three treatment protocols: (i) drugs are cycled periodically
(cycling treatment); (ii) equal proportions of the infected host
population receive each drug (50-50 treatment); and (iii) drugs
are given simultaneously to each infected host (combination
treatment).

For the sake of simplicity we generally assume in the
following that the cost of single drug resistance is the same for
drug A and B (i.e., ra 5 rb). If, however, the costs of resistance
are different for drug A and B, then the drug for which
resistance is more costly should be used more to equalize the
selection pressure on both resistant types (see Appendix B3 for
the relationship between cost and use of drug).

Case I: Infectious Transmission of Resistance. Suppose that
before population-wide treatment is started a sufficiently large
fraction of patients have resistant bacteria, such that infectious
transmission of resistance results in many more resistant cases
than resistance acquired during treatment. (Mathematically
this amounts to q, s ' 0 and ya, yb, yab . 0 at the start of
therapy in the model of Fig. 1B.) Under these conditions, all
treatment strategies will eventually result in the same benefit
as measured by the total gain of uninfected hosts or the total
reduction of infected hosts (see Figs. 3 A–C). This case is
completely analogous to the case of single antibiotic therapy
(Appendix A4). The total gain of uninfecteds is given by G 5
(1yb)[ln(gyr0) 1 DrT), where r0 is the initial fraction of
resistants before the start of therapy and Dr 5 rab 2 rw. Hence,
as long as the initial incidence of primary resistance is con-
siderably greater than the incidence of acquired resistance, the
long-run benefit of treatment is independent of the treatment
protocol.

Case II: Acquired Resistance. We now consider the case
where resistant infections are rare before the start of popula-
tion-wide therapy and initially most cases of treatment failure
are due to acquired resistance. If there is no cost to resistance
(rw 5 ra 5 rb 5 rab) then cycling and 50-50 treatment result
in the same total gain of uninfecteds (see Appendix B2).
However, if there is a cost to resistance (rab . ra 5 rb . rw),
then 50-50 treatment is marginally superior to cycling drugs,
both with respect to the gain of uninfecteds within a given time
span and with respect to the gain of uninfecteds before a given
fraction of patients is AB-res (see Fig. 3 D and E). Numerical
simulations show that 50-50 treatment is superior to cycling
regardless of how frequently the drugs are cycled.

The intuitive reason why cycling is worse than 50-50 treat-
ment is that the optimal policy is to treat at any time point with
that antibiotic for which there is least resistance in the patient
population. Imagine we start with antibiotic A. Treating with
A increases the proportion of the population resistant to A.
Eventually, the frequency of resistance to A would exceed that

FIG. 2. Emergence of antibiotic resistance in the patient popula-
tion. The shaded area reflects the total gain of uninfecteds during
treatment. If there is no cost of resistance (Dr 5 rr 2 rw 5 0), then
the total gain of uninfecteds is independent of the rate fh at which
patients are treated and cured. Hence all treatment protocols result in
the same total gain of uninfecteds. If there is a cost of resistance (Dr .
0), then the total gain is maximized if a maximal fraction of patients
receive therapy. The parameters of the simulation are given in
Appendix C.
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to B and, hence, it would be better to use B. But doing so would
increase resistance to B, and therefore force a switch back to
A. At this point the optimal policy is to switch back and forth
each time a new patient is treated. This is equivalent to the
50-50 policy.

Fig. 3 E–G compares 50-50 treatment with combination
therapy. If there is no cost to resistance, then the total gain of
uninfecteds is G 5 2(1yb)ln(s2) for 50-50 treatment and G 5
2(1yb)ln(q) for combination treatment, where s and q are the
fraction of patients that acquire resistance in response to single
and combination treatment (see Appendix B2). Thus, the
relationship between q and s2 determines whether 50-50
treatment or combination treatment is superior.

If q , s2 then combination therapy is superior to 50-50
treatment with respect to both the total gain of uninfecteds and
the time taken until given percentage of the infections are
resistant to both antibiotics (see Fig. 3 E and F).

If q . s2, then combination treatment accelerates the
emergence of resistance and reduces the total gain of unin-
fecteds, compared to 50-50 treatment (see Fig. 3 E and G).

For mutation-borne resistance, we would expect q ,, s2

for the following reason. Assume there are N bacteria within
a host and assume that on average a fraction p of these carry
mutations to resist drug A and a fraction p carry resistance
to B. Assuming the resistance mutations are independent, a
fraction of about p2 should carry both mutations. The
probability s that single-drug treatment will cause the emer-
gence of resistance is approximately min{1, Np}. By the same
reasoning, the probability q that double resistance will
emerge is approximately min{1, Np2}. Because initially an
infection is presumably clonal, sensitive and resistant bac-
teria are likely not to be in a selection-mutation equilibrium.
Therefore p will be approximately given by the mutation rate
p 5 10210–1027. Biologically realistic values for N are #1011.
Hence, Np2 will typically be much smaller than one and
therefore q ,, s2. If, however, sensitive and resistant bacteria

are in mutation-selection equilibrium then the estimate for
p might be considerably higher (14–16) and consequently the
merit of combination therapy relative to 50-50 therapy
smaller.

This argument may not hold for cases where resistance is
acquired by horizontal transfer of accessory elements (e.g.,
plasmids). Under these conditions, the simultaneous acquisi-
tion of multiple resistance determinants is very common (17).
This could increase q considerably; if the resistance determi-
nants for both antibiotics are on the same plasmid, then the
probabilities of acquiring single and multiple resistance would
be approximately equal (i.e., s 5 q). On the other hand, if both
resistance determinants do not occur on the same plasmid,
then the chances of the same bacterium acquiring both resis-
tance determinants may be vanishingly small: q ,, s2. Thus it
is difficult to predict the relative likelihoods of the acquisition
of single and multiple resistance when resistance is conferred
by plasmids.

Case III: Multiply Resistant Bacteria Are Not Present.
Imagine that resistance to both drugs requires such a rare
genetic change that it is very unlikely to be generated, even
over a time span of several years. In this case minimizing the
number of singly resistant cases (or maximizing the number of
uninfecteds) is a reasonable criterion for a policy to forestall
the advent of multiple resistance, because each new singly
resistant case provides an opportunity for the emergence of
double resistance. To maximize the number of uninfected
hosts in the absence of doubly resistant bacteria, combina-
tion therapy is obviously superior to cycling and 50-50
treatment, because it will successfully treat all infections
without giving an advantage to either singly resistant strain
(see Fig. 3J). In the absence of multiple resistance, cycling is
generally worse than 50-50 treatment with respect to the
total gain of uninfecteds for the same reason as discussed for
acquired resistance in the previous section (see Fig. 3 H and

FIG. 3. Multiple antibiotic treatment policies. The solid, dotted, and dashed lines show the densities of uninfecteds, wt-infecteds and AB-res
infecteds, respectively. The dot-dashed lines show the densities of single resistants. The shaded area reflects the total gain of uninfecteds, G. G1y2
is the total gain of uninfecteds before 50% of the infecteds are AB-res. T1y2 is the time necessary until 50% of the infecteds are AB-res. Three
treatment strategies (cycling where drugs are alternated every 5 time units, 50-50 treatment, and combination treatment) are compared. In A–C
we assume that the prevalence or resistance has progressed to a point where the contribution of acquired resistance is negligible to primary resistance
(infection by a resistant organism). In D–G we assume that resistant infections are initially rare, such that the contribution of acquired resistance
is initially numerically important by comparison to the epidemic spread of resistance. In H–J we assume that multiple resistance is not initially present
and is not generated during treatment. Measured in terms of the total gain of uninfecteds (or total reduction of infecteds) cycling is always worse
that 50-50 treatment and combination therapy is superior to cycling and 50-50 treatment except when q . s2. Note, however, that T1y2 is shorter
for combination therapy.
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I). If there is no cost to resistance, then both strategies are
equally effective.

Discussion

Our main conclusions are as follows. For directly transmitted
bacterial infections, the long-term benefit of using a single
drug from the time it is introduced until resistance makes it
ineffective is almost independent of the pattern of use (al-
though there is a slight increase in benefit if the drug is used
heavily in the early stages). When using two agents, the
simultaneous use of two drugs at the population level (but only
one for each patient), which we have called 50-50 treatment,
always produces at least as much, or more, benefit than a policy
of cycling between two drugs. In most cases, treatment of all
hosts with a combination of both drugs is better than either of
these policies; the only exception is the case in which resistance
to the two drugs is carried on the same plasmid.

In light of the model’s predictions, two of the diseases for
which the model is most appropriate provide an interesting
contrast. For treatment of tuberculosis, combination therapy is
the norm (12, 18), while gonorrhea is usually treated with a
single drug, which may be a member of any one of several drug
classes (19, 20). Although problems of nonadherence and the
rise of tuberculosis among immunocompromised persons com-
plicate the picture, the consistent use of multidrug therapy and
its general success (until recently) in stemming the spread of
tuberculosis in developed countries accords with the predic-
tions of the model. With gonorrhea, there has been consider-
able spread of resistance to a number of antibiotic classes,
which might have been preventable with the more widespread
use of combination therapy.

Another finding of the model, which agrees with the pre-
dictions of most models of resistance (13, 21), is that the spread
of resistance due to drug use will be considerably faster than
its decline when selection (treatment) is removed. This is
because the cost of resistance in the absence of the selecting
agent (antibiotic) is generally much less than the benefit of
resistance in the presence of the antibiotic. Furthermore,
laboratory experiments have shown that the cost of resistance
is quickly reduced by compensatory mutations (22, 23). Hence,
the time necessary for reversion from resistant to sensitive
infections after treatment is withdrawn might be very long.

Strictly speaking, the model considered here applies directly
only to those bacterial infections, such as tuberculosis, gonor-
rhea, and some diarrheal diseases, in which the recovery from
the infection coincides with the termination of carriage and
transmission of the infectious organisms. Many of the organ-
isms causing nosocomial infections are not obligate pathogens
of this kind, but are organisms that colonize the nose, naso-
pharynx, or gut of healthy patients and cause disease when they
enter and proliferate in normally sterile sites (24). As a result,
infection, colonization, and shedding (transmission) are dis-
tinct states, and treatment of an infection may or may not
terminate colonization or transmission. For such organisms, a
different model may be more appropriate (25). It is not
straightforward whether the conclusions of this model about
the general inferiority of cycling will extend to these pathogens
(or to the commensal bacterial f lora or sexually recombining
pathogens). However, in the absence of a specific reason
cycling of antibiotics should be done with caution.

The goal of this paper was to discuss and evaluate different
patterns of antibiotic use in a very general fashion and thereby
lay the basis for future research that addresses the specific
properties of particular pathogens in greater detail. Mathe-
matical models may provide very useful tools to develop a
rationale to extend the effective life of existing and newly
introduced antimicrobial agents.

APPENDIX

A: Single Drug Treatment Model

A1: Equilibrium Analysis. In absence of therapy (fh 5 0),
the equilibrium is given by x̂ 5 (c 1 rw)yb; ŷw 5 (lyc) 2 (dyb)
2 (drwybc); ŷr 5 0. In the presence of treatment there are two
stable equilibria depending on the efficacy of antibiotic ther-
apy. If the selection pressure against the sensitive bacteria, fh,
is smaller than the cost of resistance, Dr 5 rr 2 rw, then the
equilibrium density of uninfecteds is given by x̃ 5 (c 1 rw 1
fh)yb. The total density of infecteds ỹw 1 ỹr 5 (lyc) 2 (dyb)
2 [d(fh 1 rw)ybc], of which a fraction (Dr 2 fh)y(Dr 2 fh(1 2
s)) is sensitive to the antibiotic. If the selection pressure
exceeds the cost of resistance (i.e., fh . Dr), then the
equilibrium is given by x* 5 (c 1 rr)yb; y*w 5 0; y*r 5 (lyc)
2 (dyb) 2 (drrybc).

A2: Rise of Resistance and Ts. Substitute y for yw 1 yr and
r for yryy in Eqs. 1–3. We obtain dxydt 5 l 2 dx 2 bxy 1 (rw

1 fh(1 2 s))(1 2 r)y 1 rrpy; dyydt 5 (bx 2 c 2rw 2 (rr 2
rw)r 2 fh(1 2s)(1 2 r))y; drydt 5 (fh 2 Dr)r(1 2 r) 1
fhs(1 2 r)2, where Dr 5 rr 2 rw. The solution for the frequency
of resistant infections is r(t) 5 (e(fh2Dr)t 2 1)y(e(fh2Dr)t 2 1 1
(fh 2 Dr)y(fhs)). The time necessary until a fraction s of the
patients are infected with resistant virus is given by r(Ts) 5 s.
We obtain Ts 5 (1y(fh 2 Dr))ln[1 1 (sy(1 2 s))((fh 2
Dr)yfhs)]. If fh .. Dr and s, s ,, 1 we get Ts ' (1yfh)ln(sys).

A3: Total Benefit of Treatment. We obtain the total gain of
uninfecteds (in units of time) by integrating over (1yy)(dyydt)
(see Appendix A2). Provided that the duration of treatment is
sufficiently long {i.e., T .. (1y(fh 2 Dr))ln[1 1 1

s
(1 2

(Dryfh))]}, we get after a series of algebraic transformations
for the total gain of uninfecteds G 5 *0

T (x 2 x̂)dt 5
1yb{2ln(s) 1 ln[1 2 s 2 (Dryfh)] 1 DrT 1 ln(g)}, where
x̂ 5 (c 1 rw)yb is the equilibrium density of uninfecteds in
absence of treatment (see equilibrium analysis) and g is the
factor of reduction in the total equilibrium density of infecteds
at time T compared to baseline before therapy [i.e., g 5
y(T)yy(0)]. Provided that T is sufficiently large, such that the
resistants have reached equilibrium during therapy, the ratio of
the densities of infecteds after a time T and at equilibrium at
the start of therapy is given by y(T)yy(0) 5 [(lyc) 2 (dyb) 2
(drr/bc)][(lyc) 2 (dyb) 2 (drwybc)]. If there is no cost to
resistance (Dr 5 0) then y(T) 5 y(0) and the total gain is of
uninfecteds is given by G 5 (1yb)ln((1 2 s)ys). We obtain the
total reduction in the density of infecteds by integrating over
dxydt 1 dyydt. This yields *0

T (y 2 ŷ)dt 5 dyc *0
T (x 2 x̂)dt.

Therefore all results can be obtained in complete analogy for the
total reduction of infecteds. There is an interesting parallel to
Haldane’s (26) derivation of the cost of natural selection.

A4: Transmitted Resistance. Suppose epidemic transmis-
sion of resistance outweighs acquisition of resistance during
treatment. Hence s ' 0 and yr . 0 at the start of treatment.
We get for the total gain of uninfecteds G 5 *0

T (x 2 x̂)dt 5
1yb[ln(gyr0) 1 DrT], where g is the factor of reduction of the
equilibrium densities of infecteds before and during treatment
[i.e., g 5 y(T)yy(0)] and r0 is the fraction of resistants when
therapy is started {i.e., r0 5 [yr(0)y(yr(0) 1 yw(0))]}. Note
that the total gain of uninfecteds is independent of the
treatment strategy. For the fraction of resistants we obtain r(t)
5 r0y[r0 1 (1 2 r0)e2(fh2Dr)t], where r0 is the initial fraction
of resistant infections before therapy is started. The time
necessary until a fraction re of the patients are resistant is given
by Ti 5 (1y(fh 2 Dr))ln[(1 2 r0)yr0)(rey(1 2 re))]. After
treatment is withdrawn (f 5 0) the time necessary to decrease
resistance from a fraction re to a fraction r0 is Td 5 (1y
Dr)ln[((1 2 r0)yr0)(rey(1 2 re))].
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B: Multiple Antibiotic Treatment Model

B1: Equilibrium Analysis. The multiple antibiotic therapy
model is described in Fig. 1B. In absence of treatment (fa 5
fb 5 fab 5 0) the system converges to a stable equilibrium given
by x̂ 5 (c 1 rw)yb; ŷw 5 (lyc) 2 (dyb) 2 (drwybc); ŷa 5 ŷb
2 ŷab 5 0. In presence of sufficiently strong treatment [i.e.,
by(c 1rab) larger than by(c 1 rw 1 h(fa 1 fb 1 fab)), by(c 1
ra 1 h(fb 1 fab)), or by(c 1 rb 1 h(fa 1 fab))] the system
converges to x̂ 5 (c 1 rab)yb; ŷw 5 ŷa 5 ŷb 5 0; ŷab 5 (lyc)
2 (dyb) 2 (drabybc).

B2: Total Benefit and Ts. Assume that there is no cost to
resistance (rw 5 ra 5 rb 5 rab). Substitute y for yw 1 ya 1 yb 1
yab, f for (ya 1 yb)yy, and r for yabyy. For combination therapy
(fab 5 f, fa 5 fb 5 0) we get drydt 5 fh(q 1 (1 2 q)r)(1 2
r), which is solved by r(t) 5 q(efht 2 1)y(q(efht 2 1) 1 1).
Hence, the time until a fraction s of the infecteds are multiply
resistant is Ts 5 (1yfh)ln[(1yq)(sy(1 2 s)) 1 1]. If s, q ,,
1 then Ts ' (1yfh)ln(syq). For 50-50 therapy (fa 5 fb 5 fy2,
fab 5 0) we get dfydt 5 fh[2fy2 1 s(1 2 f 2 r) 1 (1 2
s)f(1 2 fy2 2 r)] and drydt 5 fh[sfy2 1 (1 2 s)r(1 2
fy2 2 r)]. The solutions are f(t) 5 2s(efhty2 2 1)y[1 1
s(efhty2 2 1)]2 and r(t) 5 [s(efhty2 2 1)y(1 1 s(efhty2 2 1))]2.
Thus Ts 5 (2yfh)ln[(1ys)(=sy(1 2 =s)) 1 1]. By integrat-
ing over dyydt we get for the gain of uninfecteds G 5
2(1yb)ln(q) for multiple antibiotic therapy and G 5 2(1y
b)ln(s2) for 50-50 treatment (or cycling). Hence if q 5 s2 all
treatment strategies result in the same gain or uninfecteds
(although there is a difference in Ts for combination therapy
and cycling or 50-50 treatment. If q , s2 then the gain is larger
for multiple treatment. If q . s2 then the gain is smaller for
multiple treatment.

B3: Unequal Cost to Resistance. Assume rb . ra without loss
of generality. The ratio of the times necessary for A and B
resistance to increase from a fraction r0 to a fraction re is
TayTb 5 (hfb 2 rb 2 rwyhfa 2 ra 2 rw) (see Appendix A4).
Hence, for cycling the respective time intervals should relate
to each other as Ta to Tb. The fractions treated for an adjusted
50-50 therapy are obtained by assuming TayTb 5 1. Hence, the
fractions of patients treated relate to each other as fb 5 ((ra
2 rb)yh) 1 fa. Note, that ((ra 2 rb)yh) , 1, because we assume
that there is a net benefit for resistance in presence of
treatment (i.e., hfa . ra 2 rw and hfb . rb 2 rw).

C: Parameters

All parameters are given in arbitrary units. Fig. 2: l 5 100, d 5
1, c 5 1.5, h 5 1., rw 5 0, s 5 1023, and rr 5 0 in A and rr
5 0.1 in B. The simulation is started in the equilibrium in
absence of treatment (see Appendix A1). Figure 3: In all
simulations l 5 100, d 51, c 5 1.5, h 5 1, rw 5 0, ra 5 rb 5
0.1, rab 5 0.2. Cycling: fa or fb 5 1, fab 5 0, switching every

five time units. 50-50: fa 5 fb 5 0.5, fab 5 0. Combination: fa
5 fb 5 0, fab 5 1. De novo generation of resistance: s 5 q 5
0 in A–C and H–J, s 5 1023 in D–G, q 5 1028 in D–F, q 5
1025 in G. Initial frequency of resistants at start of therapy: ra
5 rb 5 1023 in A–C and H–J, rab 5 1026 in A–C, ra 5 rb 5
rab 5 0 in D–G.
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